Dirichlet Series of Squares of Sums of Squares

Jonathan M. Borwein, FRSC

Prepared for Seventh Canadian Number Theory Association Conference

CRM, May 19 – 25, 2002

Canada Research Chair & Director

CECM
Centre for Experimental & Constructive Mathematics

Simon Fraser University, Burnaby, BC Canada

www.cecm.sfu.ca/~jborwein/talks.html

and: /preprints/2001pp.html#01:167

Revised: April 2, 2001
Abstract. Hardy & Wright records elegant forms for the generating functions of the divisor functions \(\sigma_k(n) = \sum_{d|n} d^k \) and \(\sigma^2_k(n) \):

\[
\begin{align*}
(1) & \quad \sum_{n=1}^{\infty} \frac{\sigma_k(n)}{n^s} = \zeta(s)\zeta(s-k) \\
(2) & \quad \sum_{n=1}^{\infty} \frac{\sigma^2_k(n)}{n^s} = \frac{\zeta(s)\zeta(s-k)^2\zeta(s-2k)}{\zeta(2s-2k)}.
\end{align*}
\]

- We have extended this elegant pair to:

Theorem 1 For completely multiplicative \(f_1, f_2 \) and \(g_1, g_2 \),

\[
(3) \quad \sum_{n=1}^{\infty} \frac{(f_1 * g_1)(n) \cdot (f_2 * g_2)(n)}{n^s} = \frac{L_{f_1f_2}(s)L_{g_1g_2}(s)L_{f_1g_2}(s)L_{g_1f_2}(s)}{L_{f_1f_2g_1g_2}(2s)}
\]

where \(f * g(n) := \sum_{d|n} f(d)g(n/d) \) and \(L_f(s) := \sum_{n=1}^{\infty} f(n)n^{-s} \) is a Dirichlet series.
• Let \(r_N(n) \) be the number of solutions of \(x_1^2 + \cdots + x_N^2 = n \) and let \(r_{2, P}(n) \) be the number of solutions of \(x^2 + Py^2 = n \).

◊ One application of Theorem 1 is to obtain closed forms, in terms of \(\zeta(s) \) and Dirichlet \(L \)-functions, for the generating functions of functions such as \(r_N(n), r_N^2(n), r_{2, P}(n) \) and \(r_{2, P}(n)^2 \) for certain \(P \) and (even) \(N = 2, 4, 6, 8 \).

• We also use these generating functions to obtain asymptotics for the average values of each function for which we obtain a Dirichlet series.

• We finish by discussing the more vexing case \(N = 3 \), and related matters.

This is joint work with Stephen Choi, SFU, (Rankin Memorial Volume, Ramanujan Journal, in press) who will describe the asymptotics in more detail.
OUTLINE

1. Motivation and Background.

2. Theorem on L-series of Squares of Arithmetic Functions.

3. Why Squares not Cubes?

4. Applications to r_4, r_6 and r_8.

5. Applications to Quadratic Forms.

6. Three, Twelve and Twenty Four Squares.
1. MOTIVATION and BACKGROUND

Evaluating residues of the corresponding g.f.s at their largest real poles and Cauchy’s integral theorem leads to

$$\sum_{n \leq x} r_N^2(n) = W_N x^{N-1} + O(x^{N-5/3+\epsilon})$$

for $N = 4, 6, 8$ where for $N \geq 3$

(4)

$$W_N := \frac{1}{(N - 1)(1 - 2^{-N})} \frac{\pi^N}{\Gamma^2(N/2)} \frac{\zeta(N - 1)}{\zeta(N)}$$

• This establishes some initial cases of a conjecture due to Wagon: for $N \geq 3$

Conjecture (W)

$$\sum_{n < x} r_N^2(n) \sim W_N x^{N-1}.$$

• This conjecture triggered our interest in such series representations.
Recently, Crandall and Wagon proved that

$$\lim_{x \to \infty} x^{1-N} \sum_{n<x} r_N^2(n) = W_N,$$

with various rates of convergence ($N = 3$ is especially difficult and slow). In their treatment they needed to evaluate

$$\sum_{n=1}^{\infty} \frac{\phi(n)\sigma_0(n^2)}{n^s}$$

and we have established, by an easier version of what follows, that it is

$$\sum_{n=1}^{\infty} \frac{\phi(n)\sigma_0(n^2)}{n^s} = \zeta^3(s-1) \prod_p \left(1 - \frac{3}{p^s} - \frac{1}{p^{2s-2}} + \frac{4}{p^{2s-1}} - \frac{1}{p^{3s-2}} \right)$$

where the product is over all primes.
• Why study the second-order summatories? Partly, since (W) implies that sums of three squares have positive density. Though the density of \(S = \{x^2 + y^2 + z^2\} \) is known to be exactly 5/6, there are intriguing signal-processing and analytic notions that lead more easily at least to positivity of said density.

• Indeed, from Cauchy-Schwarz, we have

\[
\#\{n < x; n \in S\} > \frac{(\sum_{n<x} r_3(n))^2}{\sum_{n<x} r_3^2(n)},
\]

so (W) gives an explicit lower bound on the density of \(S \). Of course, the density for sums of more than 3 squares is likewise positive, and boundable — but Lagrange’s theorem dominates.

◊ Still, the signal-processing and computational notions of Crandall and Wagon forge an attractive link between these \(L \)-series of our current interest and additive number theory.
The 'Entropy Inequality' below might give improved bounds. For any non-negative integer sequence \(a_n \):

\[
\# \{ 1 \leq n \leq x : a_n > 0 \} \geq \frac{\sum_{n \leq x} a_n}{\prod_{n \leq x} a_n / \sum_{n \leq x} a_n} \geq \left(\frac{\sum_{n \leq x} a_n}{\sum_{n \leq x} a_n^2}\right)^2.
\]

Let \(A \) be the arithmetic mean of \(n \)-terms and \(A_p \) be the \(p \)-th Hölder mean. Let

\[
R_p := (\frac{A}{A_p})^q,
\]

with \(q := p/(p-1) \). Now letting \(p \to 1 \) produces

\[
R_1 := \frac{A}{G^*}
\]

where

\[
G^*(a_1, a_2, \cdots, a_n) := a_1^{a_1/A} a_2^{a_2/A} \cdots a_n^{a_n/A}.
\]

By the A-G inequality, \(R_1 \geq R_2 \) which is (5).

This entails study of

\[
\sum_{n > 0} \frac{a_n \log a_n}{n^s}.
\]
The proof of Theorem 1 relies on direct manipulation and happy simplifications of the underlying *Euler products*, as illustrated in §2.

1. A first easy application of Theorem 1 is to
\[
\sum_{n=1}^{\infty} \sigma_k(n)n^{-s} \quad \text{and} \quad \sum_{n=1}^{\infty} \sigma_a(n)\sigma_b(n)n^{-s}.
\]

We let \(f_1(n) := n^k \), \(f_2(n) := \delta(n) \) and \(g_1(n) = g_2(n) := 1 \) (\(\delta(n) \) is 1 if \(n = 1 \) and 0 otherwise). Then
\[
L_{f_1 f_2}(s) = L_{g_1 f_2}(s) = L_{f_1 f_2 g_1 g_2}(s) = 1,
\]
\[
L_{f_1 g_2}(s) = \zeta(s - k), \quad L_{g_1 g_2}(s) = \zeta(s).
\]

Thus Theorem 1 gives
\[
\sum_{n=1}^{\infty} \frac{\sigma_k(n)}{n^s} = \zeta(s)\zeta(s - k)
\]

which recovers (1).
2. Similarly, if we let \(f_1(n) := n^a, f_2(n) := n^b \) and \(g_1(n) = g_2(n) := 1 \), then

\[
L_{f_1f_2}(s) = L_{f_1f_2g_1g_2}(s) = \zeta(s - (a + b)),
\]

\[
L_{g_1g_2}(s) = \zeta(s),
\]

\[
L_{f_1g_2}(s) = \zeta(s - a), \quad L_{f_2g_1}(s) = \zeta(s - b).
\]

and Theorem 1 gives

\[
\sum_{n=1}^{\infty} \frac{\sigma_a(n)\sigma_b(n)}{n^s} = \frac{\zeta(s - (a + b))\zeta(s)\zeta(s - a)\zeta(s - b)}{\zeta(2s - (a + b))}.
\]

In particular, for any real \(\lambda \),

\[
(6) \quad \sum_{n=1}^{\infty} \sigma_\lambda^2(n)n^{-s} = \frac{\zeta(s - 2\lambda)\zeta(s - \lambda)^2\zeta(s)}{\zeta(2(s - \lambda))}.
\]
2. L-SERIES of 2 SQUARES

Theorem 1 has no ‘closed-form’ extension to higher order. We consider the generating functions for the \(k\)th moment of \(r_2(n)\) (see Connors and Keating, 1999). For \(n, k \geq 0\), let

\[
A(n, k) := \sum_{j=0}^{k} (-1)^j (k - j)^n \binom{n + 1}{j}
\]

and

\[
E_n(x) := \sum_{k=1}^{n} A(n, k) x^{k-1}
\]

where \(E_n(x)\) is the \(n\)th Euler polynomial. The first few are \(E_1(x) = 1\), \(E_2(x) = 1 + x\), \(E_3(x) = 1 + 4x + x^2\) and \(E_4(x) = 1 + 11x + 11x^2 + x^3\). Then \(A(n, k)\) satisfies: \(A(1, 1) = 1\) and

\[A(n, k) = k A(n - 1, k) + (n - k + 1) A(n - 1, k - 1)\]

and so

\[
\sum_{l=0}^{\infty} l^n x^l = \frac{x E_n(x)}{(1 - x)^{n+1}}, \quad n = 1, 2, \cdots.
\]
Equation (7) yields the generating functions for the higher moments of \(r_2(n) \) as follows: for \(\mu \equiv 0 \) or \(1 \) (mod 4), we let \(\left(\frac{\mu}{n} \right) \) be the *Jacobi symbol* and consider the \(L \)-function

\[
L_{\mu}(s) := \sum_{n=1}^{\infty} \left(\frac{\mu}{n} \right) n^{-s}.
\]

Now Lorenz showed

\[
\sum_{n=1}^{\infty} \frac{r_2(n)}{n^s} = 4 \zeta(s)L_{-4}(s) = \sum_{n=1}^{\infty} \frac{4 \left(1 \ast \left(\frac{-4}{n} \right) \right)(n)}{n^s}
\]

and so \(r_2(n) = 4 \left(1 \ast \left(\frac{-4}{n} \right) \right)(n) \) for any \(n \geq 1 \). A simple calculation shows that for any \(l \geq 0 \),

\[
\left(1 \ast \left(\frac{-4}{n} \right) \right)(p^l) = \begin{cases}
1 & \text{if } p = 2; \\
 l + 1 & \text{if } p \geq 3, \left(\frac{-1}{p} \right) = 1; \\
\frac{(-1)^l+1}{2} & \text{else}.
\end{cases}
\]
We now have

\[
\sum_{n=1}^{\infty} \frac{r_2^N(n)}{n^s} = 4^N \sum_{n=1}^{\infty} \frac{(1 * \left(\frac{-4}{n}\right))(n)}{n^s}
\]

\[
= 4^N \prod_p \sum_{l=0}^{\infty} \frac{\left(1 * \left(\frac{-4}{n}\right)\right)\left(p^l\right)}{p^{ls}}
\]

\[
= \frac{4^N}{1 - 2^{-s}} \left\{ \prod \sum_{l=0}^{\infty} \left(\frac{-1}{p}\right)^l + 1 \right\}^N p^{-ls}
\]

\[
\times \left\{ \prod \sum_{l=0}^{\infty} (l + 1)\left(p^{-ls}\right) \right\}
\]

\[
= \frac{4^N}{1 - 2^{-s}} \prod \frac{1}{1 - p^{-2s}} \prod \frac{E_N(p^{-s})}{(1 - p^{-s})^{N+1}}
\]

on using (7).
• When $N = 2$, we have most pleasingly,

$$\sum_{n=1}^{\infty} \frac{r_2(n)}{n^s} =$$

$$\frac{16}{1 - 2^{-s}} \prod \left(\frac{-1}{p} \right) = -1 \prod \left(\frac{-1}{p} \right) = 1 \prod \frac{1 + p^{-s}}{(1 - p^{-s})^3}$$

$$= \frac{(4\zeta(s)L_{-4}(s))^2}{(1 + 2^{-s})\zeta(2s)}. \quad (8)$$

• The other generating functions don’t evaluate as L-functions as completely. Thus,

$$\sum_{n=1}^{\infty} \frac{r_3(n)}{n^s} =$$

$$\frac{64}{1 - 2^{-s}} \prod \left(\frac{-1}{p} \right) = -1 \prod \left(\frac{-1}{p} \right) = 1 \prod \frac{1 + 4p^{-s} + p^{-2s}}{(1 - p^{-s})^4},$$

$$\sum_{n=1}^{\infty} \frac{r_4(n)}{n^s} = \frac{256}{1 - 2^{-s}}$$

$$\prod \left(\frac{-1}{p} \right) = -1 \prod \left(\frac{-1}{p} \right) = 1 \prod \frac{1 + 11p^{-s} + 11p^{-2s} + p^{-3s}}{(1 - p^{-s})^5}$$
3. L-SERIES of 4, 6, 8 SQUARES

• Whenever a Dirichlet series is expressible as a sum of two-fold products of \(L \)-functions:

\[
L_f(s) = \sum_{\chi_1, \chi_2} a(\chi_1, \chi_2)L_{\chi_1}(s)L_{\chi_2}(s),
\]

we are able to provide a closed form (in terms of \(L \)-functions) of the Dirichlet series \(L_{f_2}(s) = \sum_{n=1}^{\infty} f^2(n)n^{-s} \), on using Theorem 1.

• In particular, let \(r_N(n) \) be the number of solutions to \(x_1^2 + x_2^2 + \cdots + x_N^2 = n \) (counting permutations and signs) and let

\[
L_N(s) := \sum_{n=1}^{\infty} r_N(n)n^{-s}, \quad R_N(s) := \sum_{n=1}^{\infty} r_N^2(n)n^{-s}
\]

be the Dirichlet series corresponding to \(r_N(n) \) and \(r_N^2(n) \).

◊ Closed forms are obtainable, via the Mellin transform, for \(L_N(s) \) for certain even \(N \) — from the explicit formulae known for \(r_N(n) \).
For example, we have

\[L_2(s) = 4\zeta(s)\beta(s), \]

\[L_4(s) = 8(1 - 4^{1-s})\zeta(s)\zeta(s - 1), \]

\[L_6(s) = 16\zeta(s - 2)\beta(s) - 4\zeta(s)\beta(s - 2), \]

\[L_8(s) = 16(1 - 2^{1-s} + 4^{2-s})\zeta(s)\zeta(s - 3), \]

where \(\beta(s) := L_{-4}(s) = \sum_{n \geq 0}(-1)^n(2n + 1)^{-s}. \)

Theorem 1 lets us obtain counterpart closed forms for \(R_N(s) \) from the above expressions for \(L_N(s) \).

\(R_2(s) \). We saw in §2 that

\[R_2(s) = \sum_{n=1}^{\infty} \frac{r_2^2(n)}{n^s} = \frac{(4\zeta(s)L_{-4}(s))^2}{(1 + 2^{-s})\zeta(2s)} \]

as is directly in Theorem 1 and (9) for \(f_1(n) := f_2(n) := 1 \) and \(g_1(n) := g_2(n) := \left(\frac{-4}{n} \right). \)
• $R_6(s)$. Write

$$L_6(s) = 16\zeta(s-2)\beta(s) - 4\zeta(s)\beta(s-2)$$

$$= \sum_{n=1}^{\infty} (16(f_1 * g_1)(n) - 4(f_2 * g_2)(n)) n^{-s}$$

where $f_1(n) := n^2$, $g_1(n) := \left(\frac{4}{n}\right)$, $f_2(n) := 1$ and $g_2(n) := \left(\frac{4}{n}\right) n^2$. It follows from Theorem 1 that

$$R_6(n) = \sum_{n=1}^{\infty} (16(f_1 * g_1)(n) - 4(f_2 * g_2)(n))^2 n^{-s}$$

$$= 16^2 \sum_{n=1}^{\infty} (f_1 * g_1)^2(n) n^{-s}$$

$$- 128 \sum_{n=1}^{\infty} (f_1 * g_1)(n)(f_2 * g_2)(n) n^{-s}$$

$$+ 16 \sum_{n=1}^{\infty} (f_2 * g_2)^2(n) n^{-s}.$$

Thus,
\[R_6(n) = 16^2 \frac{L_{f_1}^2(s)L_{g_1}^2(s)L_{f_1g_1}(s)^2}{L_{f_1g_1}^2(2s)} - 128 \frac{L_{f_1}f_2(s)L_{g_1g_2}(s)L_{f_1g_2}(s)L_{g_1f_2}(s)}{L_{f_1f_2g_2}(2s)} + 16 \frac{L_{f_2}^2(s)L_{g_2}^2(s)L_{f_2g_2}(s)^2}{L_{f_2g_2}^2(2s)}. \]

- It remains to sum the component \(L \)-functions:

\[
L_{f_1}^2(s) = \zeta(s - 4), \quad L_{g_1}^2(s) = (1 - 2^{-s})\zeta(s),
\]

\[
L_{f_2}^2(s) = \zeta(s), \quad L_{g_2}^2(s) = (1 - 16 \cdot 2^{-s})\zeta(s - 4),
\]

\[
L_{f_1g_1}(s) = \beta(s - 2), \quad L_{f_1f_2}(s) = \zeta(s - 2),
\]

\[
L_{g_1g_2}(s) = (1 - 4 \cdot 2^{-s})\zeta(s - 2),
\]

\[
L_{f_1g_2}(s) = \beta(s - 4), \quad L_{g_1f_2}(s) = \beta(s),
\]

\[
L_{f_2g_2}(s) = \beta(s - 2),
\]

\[
L_{f_1g_1}^2(s) = L_{f_2g_2}^2(s) = L_{f_1f_2g_2}(s) = (1 - 16 \cdot 2^{-s})\zeta(s - 4).
\]
Hence

\[R_6(s) = 16 \frac{(17 - 32 \cdot 2^{-s}) \zeta(s - 4) \beta^2(s - 2) \zeta(s)}{(1 - 16 \cdot 2^{-2s}) \zeta(2s - 4)} - \frac{128 \beta(s - 4) \zeta^2(s - 2) \beta(s)}{(1 + 4 \cdot 2^{-s}) \zeta(2s - 4)}. \]

• For \(R_4(s) \) and \(R_8(s) \), we need the following companion lemma:

Lemma. Suppose \(f(n) \) is multiplicative. Let \(p \) be a prime and suppose

\[
\sum_{n=1}^{\infty} \frac{A(n)}{n^s} := \sum_{m=0}^{\infty} \frac{a_m}{p^{ms}} \sum_{n=1}^{\infty} \frac{f(n)}{n^s}
\]

is the product of \(L_f(s) \) and a power series in \(p^{-s} \).
Then

\[
\sum_{n=1}^{\infty} \frac{A^2(n)}{n^s} =
\]

\[
L_{f^2}(s) \sum_{m=0}^{\infty} \frac{a_m^2}{p^{ms}} + 2L_{f^2}(s) \left(\sum_{l=0}^{\infty} \frac{f^2(p^l)}{p^{ls}} \right)^{-1}
\]

\[
x \sum_{k=1}^{\infty} \left\{ \sum_{m=0}^{\infty} \frac{a_{m+k}a_m}{p^{ms}} \right\} \left\{ \sum_{l=0}^{\infty} \frac{f(p^l)f(p^{l+k})}{p^{ls}} \right\} p^{-ks}.
\]

- Applying the Lemma to (9), and using Theorem 1, we have completed the proof of the following Theorem.
Theorem 2 We may write

\[R_2(s) = \frac{(4\zeta(s)\beta(s))^2}{(1 + 2^{-s})\zeta(2s)}, \quad \Re(s) > 1; \]

\[R_4(s) = 64(8 \cdot 2^{3-3s} - 10 \cdot 2^{2-2s} + 2^{1-s} + 1) \times \]
\[\frac{\zeta(s - 2)\zeta^2(s - 1)\zeta(s)}{(1 + 2^{1-s})\zeta(2s - 2)}, \quad \Re(s) > 3; \]

\[R_6(s) = 16 \frac{(17 - 32 \cdot 2^{-s})\zeta(s - 4)\beta^2(s - 2)\zeta(s)}{(1 - 16 \cdot 2^{-2s})\zeta(2s - 4)} \]
\[- \frac{128 \beta(s - 4)\zeta^2(s - 2)\beta(s)}{(1 + 4 \cdot 2^{-s})\zeta(2s - 4)}, \quad \Re(s) > 5; \]

and

\[R_8(s) = 256(32 \cdot 2^{6-2s} - 3 \cdot 2^{3-s} + 1) \times \]
\[\frac{\zeta(s - 6)\zeta^2(s - 3)\zeta(s)}{(1 + 2^{3-s})\zeta(2s - 6)}, \quad \Re(s) > 7. \]
• Heuristics using (2) suggested the formula for \(R_4 \) to Crandall.

• Rough analysis suggested the formula for \(R_2 \) to me. 'Integer relation methods' found the exact formula.

• Pattern matching and interpolation found the formula for \(R_8 \).

• This also found a few of the identities in §4.

• \(R_6 \) was beyond my reach computationally!
Asymptotics Since $\epsilon \zeta(1 + \epsilon) \to 1$ as $\epsilon \to 0$,
$\lim_{\epsilon \to 0} \epsilon R_N(N - 1 + \epsilon)$ at its largest pole is:

$$\lim_{\epsilon \to 0} \epsilon R_4(3 + \epsilon) = 96\zeta(3) = 3W_4$$

$$\lim_{\epsilon \to 0} \epsilon R_6(5 + \epsilon) = 240\zeta(5) = 5W_6$$

and

$$\lim_{\epsilon \to 0} \epsilon R_8(7 + \epsilon) = \frac{4480}{17}\zeta(7) = 7W_8.$$

- Using the ‘hyperbola method’ and a direct convolution argument, Theorem 2 yields:

Corollary 3 We have

$$\sum_{n \leq x} r_2^2(n) = 4x \log x + 4\alpha x + O(x^{\frac{2}{3}})$$

where

$$\alpha : = 2\gamma + \frac{8}{\pi} L'_4(1) - \frac{12}{\pi^2} \zeta'(2) + \frac{1}{3} \log 2 - 1 \approx 2.0166216 \ldots$$
and

\[\sum_{n \leq x} r_N^2(n) = W_N x^{N-1} + O(x^{N-2}) \]

with \(W_N \) given by (4), for \(N = 6, 8 \) and for \(N = 4 \) with error term \(O(x^2 \log^5 x) \).

- For \(N = 4, 6, 8 \), the best possible estimate would appear to be \(O(x^{N-2}) \).

- More generally, for \(N \geq 5 \), from Hardy’s singular series formula for \(r_N(n) \), we prove

Theorem 4 For \(N \geq 5, N \neq 6 \) and \(x \geq 1 \), we have

\[\sum_{n \leq x} r_N^2(n) = W_N x^{N-1} + O(x^{N-2} + x^{3N/4}). \]

- Crandall and Wagon have established asymptotics for \(N \geq 3 \).
4. APPLICATIONS to $r_{2,P}$

- There is a rich parallel theory of L-functions over imaginary quadratic fields. In this vein, let $r_{2,P}(n)$ be the number of solutions to $x^2 + Py^2 = n$ (counting sign and order). Denote

$$L_{2,P}(s) := \sum_{n=1}^{\infty} r_{2,P}(n)n^{-s},$$

$$R_{2,P}(s) := \sum_{n=1}^{\infty} r_{2,P}(n)^2n^{-s}.$$

- If the quadratic form $x^2 + Py^2$ has disjoint discriminants (has one form per genus), then

$$L_{2,P} = 2^{1-t} \sum_{\mu \mid P} L_{\epsilon_{\mu}\mu}(s)L_{-4P\epsilon_{\mu}/\mu}(s)$$

$$(10) = \sum_{n=1}^{\infty} \left\{ 2^{1-t} \sum_{\mu \mid P} \left(\frac{\epsilon_{\mu}\mu}{n} \right) * \left(\frac{-4P\epsilon_{\mu}/\mu}{n} \right) \right\} n^{-s}$$

where P is an odd square-free number, t is the number of distinct factors of P and $\epsilon_{\mu} := \left(\frac{-1}{\mu} \right)$ (Glasser-Zucker-Robertson).
 Explicitly, (10) holds for all type one numbers. These include and may comprise:

\[P = 5, 13, 21, 33, 37, 57, 85, 93, 105, 133, 165, 177, 253, 273, 345, 357, 385, 1365. \]

We call such \(P \) solvable.

Using (10), we have

\[
R_{2,P}(s) = \sum_{n=1}^{\infty} 2^{2-2t} \sum_{\mu_1, \mu_2 | P} \left[\left(\frac{e_{\mu_1, \mu_2}}{n} \right) \ast \left(\frac{-4P e_{\mu_1} / \mu_1}{n} \right) \right] \\
\times \left[\left(\frac{e_{\mu_2, \mu_2}}{n} \right) \ast \left(\frac{-4P e_{\mu_2} / \mu_2}{n} \right) \right] n^{-s} \\
= 2^{2-2t} \sum_{\mu_1, \mu_2 | P} \sum_{n=1}^{\infty} \left[\left(\frac{e_{\mu_1, \mu_2}}{n} \right) \ast \left(\frac{-4P e_{\mu_1} / \mu_1}{n} \right) \right] \\
\times \left[\left(\frac{e_{\mu_2, \mu_2}}{n} \right) \ast \left(\frac{-4P e_{\mu_2} / \mu_2}{n} \right) \right] n^{-s}.
\]

\[\diamond \text{ Note that } R_{2,P}(s) \text{ is a sum of Dirichlet series in the form of Theorem 1.} \]
• We have similar closed forms of L-functions for the quadratic form $x^2 + 2Py^2$ with discriminant $-8P$:

\[L_{2,2P} = 2^{1-t} \sum_{\mu|P} L_{\epsilon_\mu}(s)L_{-8P\epsilon_\mu}(s). \]

For the type two numbers

\[P = 1, 3, 5, 11, 15, 21, 29, 35, 39, 51, 65, 95, 105, 165, 231. \]

◊ We note that $210 = 2 \times 105$ yields the elliptic integral invariant, k_{210}, which Ramanujan sent to Hardy in his famous letter.

• We can thus evaluate $R_{2,P}$ and $R_{2,2P}$ and obtain the asymptotics analogous to those for $r_2^2(n)$. The prime cases provide:
Corollary 5 We have

\[R_{2,p}(s) = \frac{2\zeta^2(s)L_{-4p}(s)}{(1 + 2^{-s})(1 + p^{-s})\zeta(2s)} + \frac{2L_{-p}^2(s)L_{-4}(s)}{(1 - 2^{-s})(1 + p^{-s})\zeta(2s)} \]

for \(p = 5, 13, 37 \), while

\[R_{2,2}(s) = \frac{4\zeta^2(s)L_{-8}(s)}{(1 + 2^{-s})\zeta(2s)}. \]

Similarly,

\[R_{2,2p}(s) = \frac{2\zeta^2(s)L_{-8p}(s)}{(1 + 2^{-s})(1 + p^{-s})\zeta(2s)} + \frac{2L_{-p}^2(s)L_{-8}(s)}{(1 - 2^{-s})(1 - p^{-s})\zeta(2s)} \]

for \(p = 3, 11 \) while

\[R_{2,2p}(s) = \frac{2\zeta^2(s)L_{-8p}(s)}{(1 + 2^{-s})(1 + p^{-s})\zeta(2s)} + \frac{2L_{-p}^2(s)L_{-8}(s)}{(1 - 2^{-s})(1 - p^{-s})\zeta(2s)} \]

for \(p = 5, 29 \).
• Closed forms for $L_{2,P}(s)$ are also accessible for some P other than those of type one or type two. Thus,

$$L_{2,3}(s) = (2 + 4^{1-s}) \zeta(s)L_{-3}(s),$$

and Theorem 1 and the Lemma yield

$$R_{2,3}(s) = 4\frac{1 + 2^{3-2s}(\zeta(s)L_{-3}(s))^2}{1 + 3^{-s}} \zeta(2s).$$

• There are some simple closed forms for more general binary quadratic forms. Let

$$L_{(a,b,c)}(s) : = \sum_{n=1}^{\infty} \frac{r_{(a,b,c)}(n)}{n^s}$$

and $R_{(a,b,c)}(s) := \sum_{n=1}^{\infty} \frac{r_{(a,b,c)}(n)^2}{n^s}$ where $r_{(a,b,c)}(n)$ is the number of representations of n by the quadratic form $ax^2 + bxy + cy^2$.

29
• Then, we have (Shanks, 75)

\[\sum_{h(D)} L_{(a,b,c)}(s) = \omega(D)\zeta(s)L_D(s) \]

summed over the \(h(D) \) inequivalent reduced quadratic forms of discriminant \(D := b^2 - 4ac \) and \(\omega(-3) = 6, \omega(-4) = 4 \) and \(\omega(D) = 2 \) for \(D < -4 \).

• In particular, for \(c = 2, 3, 5, 11, 17, 41 \), the class number \(h(D) = 1 \) and the result is especially simple:

\[L_{(1,1,c)}(s) = 2\zeta(s)L_D(s). \]

Hence from Theorem 1, we have

\[R_{(1,1,c)}(s) = \frac{4(\zeta(s)L_D(s))^2}{(1 + |D|^{-s})\zeta(2s)}, \]

with similar formulae for \((a, b, c) = (1, 1, 1) \) and \((1, 0, 1) \).
• Thanks to the On-Line Encyclopedia of Integer Sequences

 www.research.att.com/~njas/sequences/

we discover that the sequence 2, 3, 5, 11, 17, 41 is exactly the so-called Euler “lucky number” sequence which consists of the numbers n such that

$$m \rightarrow m^2 - m + n$$

has prime values for $m = 0, \cdots, n - 1$.
5. THREE, 12 and 24 SQUARES

- Odd squares are notoriously less amenable to closed forms. In this subsection, we primarily record some results for $r_3(n)$, the number of representations of n as a sum of three squares. Following Hardy and Bateman, Hua gives the following formula for $r_3(n)$. Let

$$
\chi_2(n) := \begin{cases}
0 & \text{if } 4^{-a}n \equiv 7 \pmod{8}; \\
2^{-a} & \text{if } 4^{-a}n \equiv 3 \pmod{8}; \\
3 \cdot 2^{-1-a} & \text{if } 4^{-a}n \equiv 1, 2, 5, 6 \pmod{8}
\end{cases}
$$

where a is the highest power of 4 dividing n.

Then

$$
(11) \quad r_3(n) = \frac{16\sqrt{n}}{\pi} L_{-4n}(1) \chi_2(n) \\
\times \prod_{p^2|n} \left(\frac{p^{-\tau} - 1}{p-1} + p^{-\tau} \left(1 - \frac{1}{p} \left(\frac{-p^{-2\tau n}}{p}\right)\right)^{-1}\right)
$$

where $\tau = \tau_p$ is the highest power of p^2 dividing n.

32
The Dirichlet series for $r_3(n)$ deriving from (11) is not as malleable as those of (9), but we are able to derive a nice expression in terms of Bessel functions.

Let K_s be the modified Bessel function of the second kind. Then we have

$$K_s(x) = \frac{1}{2} \left(\frac{x}{2} \right)^s \int_0^\infty e^{-t - \frac{x^2}{4t}} \frac{dt}{t^{s+1}}.$$

By the substitution $t = \frac{1}{u}$ in (12), we get

$$K_s(x) = \frac{1}{2} \left(\frac{x}{2} \right)^s \int_0^\infty e^{-\frac{x^2}{4u} - \frac{1}{u}u^{s-1}} du.$$

Let

$$\theta_3(q) := \sum_{n=-\infty}^{\infty} q^{n^2}$$

be the classical Jacobean theta function.

In view of the Poisson summation formula, we have, for $t > 0$

$$\theta_3(e^{-\pi t}) = t^{-\frac{1}{2}} \theta_3(e^{-\pi/t}).$$
• The Mellin transform of $e^{-\alpha t}$ for $\alpha \neq 0$ is $M_s(e^{-\alpha t}) = \Gamma(s)\alpha^{-s}$, so (letting $q = e^{-\pi t}$) we have

\[
L_3(s) = 3 \sum_{n,m,p \in \mathbb{Z}} \frac{n^2}{(n^2 + m^2 + p^2)^{s+1}}
\]

\[
= \frac{3\pi^{s+1}}{\Gamma(s+1)} \sum_{n,m,p \in \mathbb{Z}} n^2 M_{s+1}(q^{n^2+m^2+p^2})
\]

\[
= \frac{3\pi^{s+1}}{\Gamma(s+1)} M_{s+1} \left(\sum_{n \in \mathbb{Z}} n^2 q^{n^2} \theta_3^2(q) \right)
\]

\[
= \frac{3\pi^{s+1}}{\Gamma(s+1)} \sum_{n \in \mathbb{Z}} n^2 \int_0^\infty e^{-n^2\pi t} \theta_3^2(e^{-\pi/t}) t^{s-1} dt.
\]

So $L_3(s) =$

\[
\frac{3\pi^{s+1}}{\Gamma(s+1)} \sum_{n,m \in \mathbb{Z}} n^2 r_2(m) \int_0^\infty e^{-n^2\pi t - \frac{\pi m}{t}} t^{s-1} dt
\]

\[
+ \frac{3\pi^{s+1}}{\Gamma(s+1)} \sum_{n \in \mathbb{Z}} n^2 \int_0^\infty e^{-n^2\pi t} t^{s-1} dt.
\]

(14)
The first term of (14) is
\[
= \frac{6\pi^{s+1}}{\Gamma(s + 1)} \sum_{n=1}^{\infty} n^2 \sum_{m=1}^{\infty} r_2(m) \int_{0}^{\infty} e^{-n^2\pi t - \frac{\pi m}{t} t^{s-1}} dt
\]
\[
= \frac{12\pi^{s+1}}{\Gamma(s + 1)} \sum_{m=1}^{\infty} r_2(m) m^{s/2} \sum_{n=1}^{\infty} \frac{1}{n^{s-2}} K_s(2\pi n \sqrt{m})
\]
by (13) and the second term is
\[
= \frac{6\pi^{s+1}}{\Gamma(s + 1)} \sum_{n=1}^{\infty} \frac{1}{n^{2s-2} \pi^s} \int_{0}^{\infty} e^{-x x^{s-1}} ds
\]
\[
= \frac{6\pi}{s} \zeta(2s - 2).
\]
\[\text{This proves the following result:}\]
\[
L_3(s) = \frac{6\pi}{s} \zeta(2s - 2) + \frac{12\pi^{s+1}}{\Gamma(s + 1)} \sum_{m=1}^{\infty} r_2(m) m^{s/2} \sum_{n=1}^{\infty} \frac{1}{n^{s-2}} K_s(2\pi n \sqrt{m}).
\]
\[\text{This corresponds to Madelung’s constant.}\]
The second term of (15) can be rewritten as
\[
\frac{12\pi^{s+1}}{\Gamma(s + 1)} \sum_{k > 0} k^{s/2} K_s(2\pi \sqrt{k}) \sum_{n^2 | k} \frac{r_2(k/n^2)}{n^{2s-2}}.
\]

Moreover, these Bessel functions are elementary when \(s \) is a half-integer. Most nicely, for ‘jellium’, which is the Wigner sum analogue of Madelung’s constant, we have
\[
L_3(1/2) = -\pi + 3\pi \sum_{m > 0} \frac{r_2(m)}{\sinh^2(\pi \sqrt{m})},
\]
and the exponential convergence is entirely apparent.
But none of this seems to help with $R_3(s)$!

We have a corresponding formula for $L_N(s)$, for all $N \geq 2$, in which we obtain a Bessel-series in $r_{N-1}(m)$:

\[
L_N(s) = \sum_{n>0} \frac{r_N(n)}{n^s} = 2N \frac{\Gamma(s - \frac{N-3}{2}) \pi^{\frac{N-1}{2}}}{\Gamma(s + 1)} \zeta(2s - N + 1) + \frac{4N \pi^{s+1}}{\Gamma(s + 1)} \sum_{m>0} \frac{m^{\frac{1}{2}s}}{m^{\frac{N-3}{4}}} r_{N-1}(m) \times \sum_{n>0} \frac{n^{\frac{N+1}{2}}}{n^s} K_{s - \frac{N-3}{2}}(2n\pi\sqrt{m}).
\]
There is a puissant formula for θ_2^3 due to Andrews (1986). It is

$$\theta_2^3(q) = 8 \sum_{n=0}^{\infty} \sum_{j=0}^{2n} \left(\frac{1 + q^{4n+2}}{1 - q^{4n+2}} \right) q^{(2n+1)^2-(j+1/2)^2}.$$

It shows almost immediately, Gauss’s result that every odd number is a sum of three triangular numbers.

Lamentably, we have not been able to use it to study R_3, or even L_3 any further than was recently achieved by Crandall.
Twelve and Twenty-four Squares

- Explicit ‘divisor’ formulae are well known:

\[r_{12}(n) = 8(-1)^{n-1}\sum_{d \mid n}(-1)^{d+n/d}d^5 + 16\omega(n) \]

\[r_{24}(n) = \frac{16}{691}\sigma_{11}^*(n) \]

\[+ \frac{128}{691}\left((-1)^{n-1}1259\tau(n) - 512\tau\left(\frac{1}{2}n\right)\right) \]

Here

\[\sigma_{11}^*(n) = \sum_{d \mid n}d^{11} \]

if \(n \) is odd and

\[\sigma_{11}^*(n) = \sum_{d \mid n}(-1)^d d^{11} \]

if \(n \) is even, and

\[q((1 - q^2)(1 - q^4)(1 - q^6)\cdots)^{12} = \sum_{n=1}^{\infty} \omega(n)q^n \]

and

\[q((1 - q)(1 - q^2)(1 - q^3)\cdots)^{24} = \sum_{n=1}^{\infty} \tau(n)q^n. \]
• We record these representations because, while \(N = 12 \) and \(N = 24 \) (due to Ramanujan) are the next most accessible even cases, neither directly leads to an appropriate closed form for \(L_N \) let alone for \(R_N \).

◊ This is thanks to the impediment offered by \(\omega \) and \(\tau \) respectively: which encode knowledge, via the \textit{Jacobi triple-product}, of all the representations of \(n \) as a sum of 4 or 8 squares.

• The divisor functions do produce appropriate L-function representations. Thus, using Ramanujan’s \(\zeta \)-function

\[
\rho_{24}(s) := \sum_{n=1}^{\infty} \frac{\tau(n)}{n^s} = \prod_p \left(1 - \tau(p)p^{-s} + p^{11-2s} \right)^{-1},
\]

it transpires that \(\tau \) is multiplicative, with the preceding lovely Euler product.
• Additionally,

\[
L_{24}(s) = \sum_{n=1}^{\infty} \frac{r_{24}(n)}{n^s}
\]

\[
= \frac{16}{691}(2^{12-2s} - 2^{1-s} + 1)\zeta(s)\zeta(s-11)
\]

\[
+ \frac{128}{691}(745 \cdot 2^{4-s} + 259(1 + 2^{12-2s}))\rho_{24}(s).
\]

Similarly, with \(\rho_{12}(s) := \sum_{n=1}^{\infty} \frac{\omega(n)}{n^s} \) one has

\[
L_{12}(s) = \sum_{n=1}^{\infty} \frac{r_{12}(n)}{n^s}
\]

\[
= 8(1 - 2^{6-2s})\zeta(s)\zeta(s-5) + 16\rho_{12}(s).
\]

◊ Finally, we note that the Rankin provided an ‘almost closed form’ for

\[
\sum_{n=1}^{\infty} \frac{\tau^2(n)}{n^s} = \prod_p \left(1 + \tau^2(p)p^{-s} - p^{22-2s} - \frac{2\tau^2(p)p^{-s}}{1 + p^{11-s}} \right)^{-1}.
\]
REFERENCES

• These and other references are available at www.cecm.sfu.ca/preprints/

◊ Quotations at jborwein/quotations.html

42